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Introduction

Neutron stars are stellar structures that can result from the gravitational collapse of a
massive star. They are among the most dense, stable structures in the universe. Their
stability can be disrupted, however, by radial oscillations, which result when the star is
perturbed from its equilibrium configuration. Here we consider hybrid stars, or stars
characterized by a quark matter core surrounded by a nuclear matter envelope.

John Bardeen, in his Catalogue of Methods [1], detailed two criteria for the stability of a
compact star. These methods have been shown to agree consistently for regular neutron
stars. We observed, however, that the criteria disagreed for a white dwarf with a strange
quark core proposed by Norman Glendenning [2]. This observation provided the motivation
for this project: to examine whether this discrepancy also occurs for hybrid stars. Such
conclusions could provide insight on the possible existence of these stars.

Hybrid Stars

Families of stars are characterized by an equation of state (EoS), a relation between the
energy density of the star, ε, and the pressure, p. Specific stars in these families are uniquely
identified by their central pressure, pc. Hybrid stars either have a kink or discontinuity in
the equation of state, which represents the change from quark matter to nuclear matter.
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I (I) Mass-Radius Plots

This approach is qualitative. For a given EoS, we can vary the central pressure to obtain a
sequence of stars. If we plot the mass vs. radius of these stars, we obtain a curve. Below, we
show the curve for a linear equation of state.

Figure 2: Stability Changes in a Mass-Radius Plot
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Bardeen’s criteria states that stability changes occur at extremal points in M. Specifically,
at a local extremum, when dM

dR = 0,
(i) If the MR-plot bends counterclockwise, then one previously

stable mode becomes unstable.
(ii) If the MR-plot bends clockwise, one previously unstable mode

becomes stable.

I (II) Chandrasekhar’s Equation

We can directly calculate the frequency of oscillations in a neutron star with Chandrasekhar’s
Equation, a Sturm-Liouville Problem. In this problem, the frequency, ω2

n, must be chosen
such that differential equation

d
dr

(
Π(r)

dun(r)

dr

)
+
(
Q(r) + ω2

nW (r)
)
un(r) = 0

satisfies the boundary conditions un ∼ r3 near the origin and dun
dr = 0 at the surface of the

star. Here, un(r) is the amplitude of the radial oscillations, while Π, Q, and W are all
functions dependent on properties of the star.

The solutions to the Sturm-Liouville problems ω2
n are called the radial modes. If

ω2
n < 0, the mode is unstable. Otherwise, if ω2

n ≥ 0, the mode is stable.

I Bardeen’s theorem states that a stellar structure has ω2
0 = 0 if and only if

dM
dR = 0 at this star.

Method

We used an equation of state of the form

ε(p) =

{
1.41p + 2× 108, p ≤ 1.04× 108

kQMp + εQM, p > 1.04× 108

We have two cases:

I (I) Kink: Here, we vary kQM and choose εQM such that ε(p) is continuous at
p = 1.04× 108. Thus, ε′(p) will be discontinuous.

I (II) Discontinuous: We set kQM = kNM = 1.41 for simplicity, but vary εQM to produce
a “jump” in the equation of state.

For each EoS, we calculated the central pressure at which ω2
0 = 0 and the central pressure

at which dM
dR = 0 (mass extremum).

Results

We calculated the central pressures at which dM
dR = 0 and ω2

0 = 0. In both cases of a kink
and discontinuity, we found that these central pressures did not agree, violating Bardeen’s
Theorem. Below, we plot the central pressures as we vary kQM for the kink case:

Figure 3(a): Critera for Stability in a Kink Equation of State

kQM = 1.41, continuous EoS

Mass Extremum (dR
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Zero Frequency Oscillation (ω0
2 = 0)
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On both sides of kQM = 1.41, the central pressures diverge in a consistent manner. Varying
εQM, the discontinuous case, gives the plot below. Note that we must have
εQM > 2× 108, as the energy density cannot decrease with respect to pressure.

Figure 3(b): Critera for Stability in a Discontinuous Equation of State

εQM = 0, continuous EoS 
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Conclusion

From these results, we can conclude

1. Introducing a kink or discontinuity in the equation of state causes Bardeen’s two conditions
of stability to disagree as they stand. In order to reconcile this, either:

2. The Chandrasekhar Equation must be modified to produce the correct zero frequency
configuration;

3. Or the stability changes for these stars do not occur at mass extremum.

Currently, we are inclined to believe that the Chandrasekhar equation must be modified.
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