Diverse weighting of shared input noise prevents information saturation in a population code
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Noise is a prominent feature of neural systems: neural responses will vary trial-to-trial despite constant
experimental stimuli. In sensory cortex, response variability is often correlated - these noise correla-
tions are of theoretical interest because their structure can strongly influence the fidelity of a population
code. Previous work has demonstrated that shared input noise can induce specific noise correlations,
called differential correlations, that cause information to saturate in a neural population. We present a
network of linear-nonlinear neurons in which we induce differential correlations by injecting noise to
model, for instance, shared synaptic noise from irrelevant upstream action potentials. We show that by
applying a diverse set of synaptic weights to the injected noise, the network can prevent information
saturation and further improve the accuracy of its population code, despite an overall increase of noise
in the system. This improvement results because the noise correlations are restructured in a way that
is beneficial for decoding. Thus, by diversifying synaptic weights, a population of neurons can remove
the harmful effects imposed by afferents that are uninformative about a stimulus. Interestingly, we also
find cases where an abundance of weight diversity is harmful to the network, implying that there is
some balanced regime where diversifying synaptic weight is optimal.

Significance

Population coding is hypothesized to be one mechanism of neural coding in sensory cortex. Noise
correlations can be beneficial or harmful to a population code, depending on the relationship between
the geometry of noise correlations and the tuning curve of neurons. In particular, Moreno-Bote et al.
(2014) found that differential correlations, which can arise from shared input noise, are detrimental to
a population code because they cause the population response distribution to lie parallel to the tuning
curve. Thus, differential correlations result in information saturation in a neural population.

Sensory cortex must overcome the adverse effects of differential correlations. To explore possi-
ble strategies, we induced differential correlations in a linear-nonlinear network by introducing shared
input noise. We find that the network can remove the differential correlations by applying a diverse
range of weights to the input noise. Thus, diverse weighting of synapses presents an effective strategy

to improve population coding. Linear Filter ~ Nonlinearity Firing Rate

Model

Our network consists of NV neurons, each with a linear
filter followed by a nonlinearity. The neurons accept
two inputs: (1) a stimulus s and (2) injected Gaus-
sian noise &; with mean zero and variance o?. The
linear filter of neuron ¢ computes the linear combina-
tion ¢; = v;s + w;&; and passes ¢; to its nonlinearity
gi(z). The output of the nonlinearity, r; = g;(¢;), can
be thought of as the average firing rate for the ;th neu-
ron.

Then, for a specific trial, the firing rate is drawn
from a distribution with mean ;. We consider two
cases. First, in the Gaussian case, the average firing rate r; is set as the mean of a Gaussian distribution
with variance of unity. In the Poisson case, r; is set as the mean of a Poisson distribution.
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We assess the strength of the population code with the linear Fisher information. Fisher information
provides a lower bound to the variance of the optimal unbiased estimator and is a standard measure of
a population code’s ability to discriminate a stimulus. The linear Fisher information, an approximation
to the Fisher information, is given by

Ir(s) = £'(s)'S 7 (s)f ()

where f(s) is the tuning curve of the neurons, 3(s) is the covariance between the firing rates of the
neurons, and derivatives are taken with respect to s. Thus, for a choice of nonlinearity g(x), the Fisher
information is dictated by the correlational structure established by a choice of weights (v, w).

Results

We find that increasing the weight diversity of noise (quantified by the variance of the weights) increases
the Fisher information. A particular case is shown in Figure 2, where we plot the Fisher information
(derived analytically) as a function of N for a Gaussian network and nonlinearity g(z) = x?, while
varying only w. For low weight variance, the Fisher information saturates, implying the existence
of differential correlations. Once the weights become more diverse, however, the Fisher information
increases without bound.

In Figure 3, we compare the Fisher information between the Gaussian and Poisson networks (both
with size N = 500) against the variance of the noise weights ¢2. Initially, the Fisher information
increases as the variance of weights. The Poisson network, however, exhibits decreasing Fisher infor-
mation for large o2 . Hence, there is some balanced regime in which diversifying noise is optimal. We
also find that the Fisher information increases with increasing stimulus weight diversity o2, as has been
observed previously (Ecker et al., 2011)

Weight diversification is an effective strategy because the weights redistribute the noise correlations
so that the population response distribution lies more orthogonal to the tuning curves f(s) of the neu-
rons. Thus, the differential correlations disappear, allowing the Fisher information to increase without
bound.

We have observed similar enhancement of Fisher information with increasing weight diversity for
other choices of g(z), such as a Gaussian nonlinearity and soft threshold. These results imply that a
viable strategy by which neurons can improve their population coding is to apply a diverse weighting
to synaptic inputs. Thus, the harmful effects of an upstream neuron whose action potentials are unim-
portant for the current stimulus can be ameliorated, even if the weighting increases the magnitude of
noise for specific neurons.



